
Service Quality Management in the Microservices Age

1

Service Quality
Management
in the Microservices Age

Service Quality Management in the Microservices Age

2

… we examine what makes

microservices different

from traditional app

architectures, the special

management challenges

microservices present,

and how teams can

effectively address those

challenges by adopting a

new approach to service

quality management,

tailored for the brave new

world of microservices.

In this
eBook

Table of
Contents
P. 3
The Brave New World
of Software Design

Microservices have improved

the way we design, build and

deliver software. But these

improvements come with

challenges.

P. 5
The Technologies of the
Microservices Age

A look at the technologies

and design philosophies

that are reshaping the way

we deliver software in the

microservices age.

P. 11
Using Intelligent Analysis
to Thrive in the Brave New
World of Microservices

Key capabilities and

philosophies needed to

effectively manage high

performance, highly scaled

microservice applications.

P. 7
The Challenges of
Microservices

An examination into the aspects

of Microservice architecture

that create challenges for

deployment and service quality

management.

P. 16
A New Generation of
Service Quality
Management Tools

A practical look at what these

new management philosophies

can achieve to help IT

Operations and DevOps teams

meet their service goals.

Service Quality Management in the Microservices Age

33

The Brave
New World of
Software Design

Microservices are changing the world

of software. There is no disputing that.

App Server
Business Logic

Web Server
UI Layer

Database

Microservice

Microservice

Microservice

Microservice

Microservice

Web Server
UI Layer

Database
Microservices

Database

Database

Database

Thanks to the microservice architecture model,

applications can be developed and updated at a

much higher velocity. They are also more nim-

ble and scalable, and more robust and resilient

against disruptions. They can be updated easily

and quickly. They enable fully continuous deli-

very and allow DevOps teams to make the very

most of their skills and resources.

Yet, while microservices solve many problems

associated with traditional software delivery,

they also present a new type of challenge.

Because microservices architectures divide apps

into multiple pieces—essentially dis-integrating

them — they introduce a new level of complexity

to application environments.

Service Quality Management in the Microservices Age

4

Complicating matters further is the fact that

microservices applications are often distributed

across a cluster of servers, and are hosted using

multiple layers of infrastructure, such as a

container environment running on top of virtual

machines that in turn are hosted on physical

servers. For this reason, the exact location of any

particular microservice is fluid and ambiguous.

In essence, when an organization migrates to micro

services to achieve greater velocity and agility,

the tradeoff is higher operational complexity.

As a result, while microservices deliver a clear

business benefit by making software faster and

more agile, they also significantly complicate

management of overall service quality and

performance.

This does not mean that

the service quality of a

microservices environment

cannot be effectively

monitored and managed.

It certainly can. But doing

so requires a new approach.

Traditional monitoring

strategies will come up short

in a microservices world.

As application delivery
frequency has increased,
so has application complexity.

Main-
frame

Client-
Server

3-Tier
(JZEE)

SOA
Microservices

Containerized
Microservices

Container
Orchestration

Increasing
velocity

Slower deployment

More
complex

Service Quality Management in the Microservices Age

5

The Technologies of
the Microservices Age

We begin by defining the new technologies and design philosophies that are

shaping the way software is conceived and delivered in the age of microservices.

Today, the following

concepts and technologies

define the production

of software:

•	 Continuous delivery

•	 Polyglot pipelines

•	 Containers

•	 Highly distributed environments

•	 Software-defined everything

•	 Everything-as-a-Service

•	 DevOps

Containers

The introduction of production-

ready container platforms

(especially Docker) over the past

several years affords software

delivery teams a leaner, faster

way to write, stage and deploy

code. Containers lend themselves

well to microservices apps

because the various microservices

that comprise an app can be

rapidly deployed across different

groups of containers. Apps also

scale easily within a containerized

environment, especially when

service discovery is automated

and orchestrators help to manage

configurations automatically.

Continuous delivery

Crafting code at a slow, staccato

pace based on plans made far in

advance no longer works. Today,

software engineering teams

strive to release code on a rapid,

continuous basis by reacting to

user feedback as quickly as it

arrives. Continuous delivery

helps to make software delivery

agile and nimble. It also makes it

easy to adjust or add a new

microservice because changes

to a single microservice do not

disrupt the larger application.

Polyglot pipelines

Software engineering teams

also place a premium on the

ability to switch easily between

different development

frameworks as their needs and

the tools available to them

change. The ability to maintain a

polyglot pipeline is another

crucial factor in achieving agility.

Service Quality Management in the Microservices Age

6

Everything-
as-a-Service

Organizations today have moved

many of their workloads to the

cloud. They consume compute

and storage resources as a

service. This makes their

infrastructure more scalable and

suited to host microservices

applications.

DevOps

The embrace of agile

development, coupled with the

DevOps movement that

followed it, has reshaped the

way organizations think about

and approach software design

and delivery. Today, constant

collaboration and communication

between everyone involved in

software production are both

priorities. So is the ability to be

flexible in defining the roles that

individual team members are

expected to assume. Microservices

help to enable DevOps by

facilitating software that is as

agile as the team that creates it.

All of the above makes software delivery today radically different than it

was just a few years ago — before Docker became ready for production

use, before DevOps became common across all types of organizations, and

before software-defined storage, networking and everything else

inaugurated a new type of development and deployment strategy.

Highly distributed
environments

Just ten years ago, apps and

services were rarely distributed

across multiple servers. That

began to change with the

introduction of Service-

Oriented Architectures, or SOAs,

in the mid-2000s, along with

the move to cloud-based

environments. Today, the

transition is complete.

Production environments are

commonly distributed across

multiple servers. This

distributed design adds a great

deal of scalability and resiliency

because it allows hosting

infrastructure to be added or

subtracted from an

environment without

downtime. Distributed

environments also ensure that

the failure of an individual server

will not disrupt the continuity of

a running application that is

distributed across many servers.

Software-defined
everything

Today, it is difficult to map an

application, service or piece of

data to a particular server.

That’s because software-

defined environments, which

are now widespread, abstract

applications and services away

from the underlying

infrastructure. This design

makes microservices easier to

implement because individual

services no longer have to be

tied to particular hosts.

Service Quality Management in the Microservices Age

7

The Challenges of
Microservices

The changes described above have exerted a decidedly positive impact

on software delivery in most respects. Software production and

deployment today is much faster, more reliable and more agile than it

was just a few years ago. Organizations that embrace modern software

delivery techniques are also better positioned to support new business

services and cater in a more nuanced way to precise business needs.

However, as noted in the introduction, the

explosion of new technologies in recent years

also comes with some caveats. The innovations

that make agile, microservices-based software

delivery possible also make service quality

management more difficult, increasing the

difficulty of delivering high-performance, highly

scalable applications around the clock.

Consider the following ways in which the

software delivery practices of today make service

delivery and quality assurance more difficult.

The Challenges of

Microservices:

•	 Complex dependencies

•	 Continuous delivery

•	 Containerized environments

•	 Microservices architectures

•	 Everything-as-a-Service

•	 DevOps and fluid roles

Service Quality Management in the Microservices Age

8

Complex
dependencies

Mapping dependencies in a

microservices environment is

extremely important, but also

extremely complex.

In a legacy environment,

dependencies are relatively few

in number and easy to identify.

It's not hard to know which

apps are running on which

servers, or which storage

service is linked to which app.

Under a microservices

architecture, however, the

dependencies and performance

patterns that link services and

infrastructure together are

much more complicated.

Microservices are often

deployed using containers that

are distributed across a cluster

of servers. Network routes are

adjusted constantly by load

balancers in response to shifts

in demand. The ports that

individual microservices use to

communicate with each other

can be changed without notice

by orchestrators.

For these reasons and more,

mapping the dependencies

within a microservices

environment is highly complex

and difficult to do manually. So

is the task of tracing an incident

back to the root cause.

For example, a storage service

problem could be the result of

a failed server, a coding

mistake, a disk failure or a

slowdown on the virtual

network that connects your

storage array to the rest of your

application. In an event like this,

mapping the intricate

dependencies of the storage

service is the only way to

identify the exact cause of the

incident in order to resolve it.

A Journey into Microservices:
Dealing with Complexity

Halo Tech Blog

Service Quality Management in the Microservices Age

9

Microservices architectures

In a microservices environment, there are more

services to monitor. It’s not enough simply to

know whether your app is up or down. You need

to keep track of the many microservices that

comprise your app—and you need to monitor them

not just for uptime, but also for quality of service,

so that you can identify and address reliability

issues within a specific microservice before they

degrade the performance of the entire app.

One host quite
commonly has

many containers

The number of
objects to monitor
grows exponentially
in microservice
environments.

Service Quality Management in the Microservices Age

Continuous delivery

Agile code is developed in small increments. While

that makes software delivery faster and more

flexible, it also means changes are introduced at a

faster pace. Effective Service Quality Management

requires DevOps teams to see changes when they

occur and understand immediately the impact on

scale, performance, error rates and more.

Containerized environments

In containerized environments, there are

significantly more components within an

application to monitor. Instead of a few dozen

servers and applications (the number of monitoring

objects one would have in a large traditional

environment), a containerized environment could

be made up of thousands of individual ephemeral

containers. As a result, the number of objects

that need to be monitored and the rate of

change within the environment as containers

spin up and down increases dramatically when

an organization migrates to microservices.

Service Quality Management in the Microservices Age

10

Everything-as-a-Service

The embrace of the Everything-as-a-Service

model means many organizations no longer

own or are able to map the underlying

infrastructure on which their applications,

services, microservices and containers live.

When seeing and touching the servers that host

your software is no longer an option, you need

tools that can provide visibility into the

infrastructure no matter where it is, even if it is

managed by third parties.

DevOps and fluid roles

Under the DevOps model, individual team

members’ roles are fluid and shifting. This

means everyone now has a hand to play in

application delivery and service quality

management, including engineers and admins

who were not specifically trained in application

technologies or in the architecture of the apps.

For this reason, DevOps teams require quality

management solutions that are sufficiently

intuitive and automated for non-specialists to

use effectively.

Service Quality Management in the Microservices Age

11

Using Intelligent Analysis to
Thrive in the Brave New World
of Microservices

Now that we understand the challenges associated with monitoring and

ensuring quality in the microservices age, let’s examine the strategies

that software delivery teams can adopt to meet the challenges.

As you’ll see, all of the strategies and abilities for

effective service quality management in a

microservices environment (which are outlined

to the left) center on automating workflows and

using tools to achieve results on a scale that

humans alone cannot feasibly produce.

Intelligent analysis, machine-assisted learning

and automation are at the root of successful

service delivery and quality management for

microservices.

Separate incidents from noise

Because a microservices environment involves

so many moving parts and a high volume of

activity, it’s essential to be able to separate

incidents that require handling from operational

noise quickly, using intelligent analysis that is

built into your tools.

An incident is any event or issue that negatively

impacts the quality of a service or microservice.

Incidents happen when a service or microservice

fails to deliver within a period of time that is

acceptable to the organization.

Using Intelligent Analysis

to Thrive in the Brave New

World of Microservices

•	 Separate incidents from noise

•	 Make monitoring information

actionable

•	 Understand incidents and

dependencies precisely

•	 Share information easily

across your team

•	 Maintain both real-time visibility

and historical visibility

•	 Minimize manual configuration

•	 Achieve continuous understanding

Service Quality Management in the Microservices Age

12

In contrast, noise is data generated by normal

activities. Noise is not associated with a quality-

of-service problem.

Separating incidents from noise means being able

to recognize (by glancing at your application and

service dashboards) which types of data are

associated with a potential problem (like a

microservice running short of compute

resources), and which are just natural,

unremarkable events (such as containers spinning

down as demand for a service decreases).

Make monitoring
information actionable

For similar reasons, the monitoring data your

team collects should be immediately

translatable into action. In other words, your

team and the software it uses should be able to

leverage monitoring information quickly in order

to understand and fix a problem.

To achieve this, look for tools that go beyond

collecting data. Your tools should also be able to

leverage intelligent analysis to turn data into

actionable information by taking advantage of

machine learning and automation. They should

also be capable of detecting anomalies and

mapping service dependencies automatically so

that you can focus on managing the incidents

that your tools identify, rather than having to

invest time in interpreting data manually.

Understand incidents and
dependencies precisely

Knowing that a problem exists with one of your

services is only the beginning of the battle. You

also need to be able to identify the root cause of

the issue quickly and immediately understand

how it impacts other parts of your environment.

Tools that can automatically map dependencies

enable this level of insight.

There are 3 key steps to efficient service quality
management: eliminate noise, make monitoring
data actionable, and precisely understand
incident dependencies.

Service Quality Management in the Microservices Age

13

Understanding how services interact and how a

problem with one component can affect others

is essential, because in a fast-moving

microservices environment composed of many

layers of infrastructure, the source of an

incident could lie in many different places—in a

host server, in middleware, in application code,

in a container, on the network, and so on.

Share information easily
across your team

In a DevOps world, it’s not enough for only part

of the software delivery team to have access to

service quality data. You need a way to share

information seamlessly across the entire

organization.

For example, if your tools detect a quality-of-

service issue and suggest that it can be traced to

application code, it’s crucial for the operations

team to communicate that information quickly

to the developers who can fix the problem

within the application. Likewise, service quality

management tools should provide visibility into

the full application stack for all team members

in order to enable a continuous feedback loop.

When it comes to information sharing, the central

goal of your operations workflow should be the

implementation of continuous understanding of

events—for all members of the team.

Maintain both real-time visibility
and historical visibility

It’s important to be able to detect and

understand problems in real time as they occur.

Real-time reaction requires an ability to separate

incidents instantaneously from noise, identify

the root of a service problem, and use service

quality and performance data to develop an

immediate response.

It’s equally crucial to be able to time-shift—that

is, to step back in time by viewing historical data

and dependencies at a specified point in the

past. Time-shifting enables you to understand

how an incident may have evolved over time,

and which initial conditions triggered it, by

examining information such as the initial layout

and structure of an application, or previous

allocations of containers to hosts. Your tools

should support both types of scenarios. This is the

only way to achieve continuous understanding

of both present and past events.

Service Quality Management in the Microservices Age

14

Minimize manual
configuration

In a hyper-scaled environment, it’s critical to

have tools that automate configuration as

much as possible.

That’s because in a microservices environment,

updating configuration information or adding

services manually takes a great deal of time.

This is true both because of the large number of

components in a microservices environment,

and the complex dependencies that arise from

a microservices architecture. Attempting to

configure tools for the environment manually

undercuts your ability to be agile and scalable,

and therefore defeats much of the purpose of

implementing a microservices architecture in

the first place.

For that reason, your service quality

management strategy should take advantage

of tools that automate configuration and

service discovery as much as possible. The

deployment of new code, new apps, new

servers, and so on within your environment

should be automatically discovered along with

their associated dependencies. This is another

essential ingredient for achieving continuous

discovery and understanding.

With so many objects
and so much change,
the only way to
accurately understand
service quality is by
continuously discovering
any and all updates

Didn't I configure
my management
tool yesterday?

In Microservices environments, the only constant is change.
Manual configuration of monitoring is a never-ending cycle.

Service Quality Management in the Microservices Age

15

Along the same lines, monitoring agent

configuration should be automated. Your team

should be able to focus its time doing what only

humans can do (interpreting and acting upon

complex health data), rather than the tedium of

manually installing and setting up agents.

As noted above, automated anomaly detection

(delivered via machine learning) and the mapping

of service dependencies also help you to minimize

the amount of manual configuration that your

monitoring workflow requires. When your

monitoring tools can detect anomalies and

dependencies automatically, your team does not

need to spend time configuring its tools to focus

on these points of interest.

Achieve continuous
understanding

A highly dynamic microservices environment is

always changing. Performance and Service Quality

information or trends may cease to be relevant

just minutes after you identify them.

For that reason, it’s essential to implement a

service quality management workflow that

provides continuous understanding.

Continuous understanding is facilitated by

ongoing, automatic rediscovery of environment

data, dependencies and configurations.

Automation and intelligent analysis are required

components of continuous understanding,

because the only feasible way to gain continuous

insight into your microservices is to automate the

processes that provide visibility.

Intelligent automated discovery and service health
monitoring allows Operations teams to manage their
systems and applications, not their management tools.

That was easy!

Service Quality Management in the Microservices Age

16

A New Generation of
Service Quality
Management Tools

Today, teams need a totally new generation of

management tools—tools that automate setup,

discovery and service quality monitoring

decisions on their own, without requiring human

expertise or configuration.

Instana is a leading provider of this new

generation of Service Quality Management tools.

Instana’s Dynamic APM solution automates

application discovery, agent deployment and

monitoring configuration across the full

microservice technology stack. Instana reduces

troubleshooting effort by eliminating the noise

and exactly identifying the triggering event and

most likely cause of each incident. Essentially,

Instana does what a human operations team

cannot - manage the service quality across the

entire microservice application environment.

Service Quality Management in the Microservices Age

A curated knowledgebase
and machine learning
allows Instana to
precisely identify root
cause and assist with
problem resolution

Achieving the complex, flexible,

ultra-scalable monitoring

strategy discussed above

requires a fundamentally new

approach to managing service

quality. At Instana, we like to

think of quality management

solutions for microservices as

an entirely new generation of

systems management tools.

Organizations can no longer

make do with older generations

of tools that were conceived

primarily to track the uptime or

downtime of servers and

measure application

performance, or the somewhat

more sophisticated set of

solutions designed for the cloud.

Service Quality Management in the Microservices Age

17

Service Quality Management in the Microservices Age

17

Stan
Your Intelligent
DevOps Assistant

Instana provides the only APM solution that

automatically discovers services, deploys agents

and monitors component health for microservice

and containerized applications.

Built to handle the demands of agile

organizations, Instana continuously aligns

application maps with any changes, detects

behavioral anomalies and automatically

provides a health score for each technology

component.Organizations benefit from real-

time impact analysis, improved quality of

service, and optimized workflows that keep

applications healthy.

The solution notifies DevOps teams when

service quality is at risk, providing precise

information identifying the triggering event

and potential root cause.

Organizations benefit from real-time impact

analysis and actionable recommendations to

deliver higher service quality on all their

business applications.

About
Instana

We
invite
you
… to check out
Instana’s documentation
to get a sense of just how
much our solution can do.
And if you’re ready, give
Instana a try today.

https://docs.instana.com
http://bit.ly/2qKfNri
https://docs.instana.com
http://bit.ly/2qKfNri

	Try Button:
	Doc Button:
	Doc Text Button:
	Try Text Button:

